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Abstract. Exact results are obtained for a square l d c e  fifteen-vertex model and related O(n) 
model recently propwed by Nienhuis. The partition function Per site and finite-size mrrections 
are obtained. along with the critical enpwents via thc Temperley-Lieb equivalent six-vertex 
model. 'the exact exponents Y = $ and y = $ follow in the limit n = 0 for cyen syitem sizes. 
Odd system sizes are also discussed. The fifteen-vertex model is also the vertex formulation of 
the anisampic. or q d e f m e d ,  spin-I biquadratic model. 

I. Introduction 

The study of vertex models has continued to flourish since Lieb's pioneering calculation of 
the residual entropy of square ice [I]. Indeed, the exact solution of the six-vertex model [Z, 
31 stands as one of the comerstones in the thmry of exactly solvable lattice models. For 
the six-vertex model in the critical regime, the vertex weights can be written (see, e.g., [31) 

(1) 01,. . ..06 = p ( ~ ,  I ,X,X,  1 +.re", 1 +xe-') 

where x = shu/ sin@ - U) and p = sin@ -U)/ sink. 
The diagonal-to-diagonal transfer manix is made up of operators 

x, = p ( l + x U , )  (2) 

each adding a vertex to the lattice. The operators U, satisfy the celebrated Temperley-Lieb 
(TL) algebra [4, 51: 

U! = Jizuj 
uj U,*, uj = uj 
&Uj = UjUi li - j l  > 1 

(3) 

where, for the six-vertex model, 

a = 2 COS A. (4) 

Two other solvable vertex models are the three-state nineteen-vertex models of 
Zamolodchikov and Fateev [6] and Izergin and Korepin [7]. Now Nienhuis has recently 
proposed three solvable O(n) models on the square lattice [SI. The second of these models 
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is related to the Izergin-Korepin model and the K i d  to the Zamolodchikov-Fateev model 
with 6xed fugacity n = 2. In a special Limit the Izergin-Korepin O(n) model reduces to a 
seven-veitex model on the honeycomb lattice. This vertex model is equivalent to the o(n) 
model originally proposed by Nienhuis [9] and has recently been investigated by a number 
of authors [lo-121. The critical properties of the more general Izergin-Korepin model have 
also been investigated [13-161. 

One of the underlying motives for this work is that the n = 0 limit of the O(n) model 
yields information on the configurational statistics of two-dimensional polymers (see, e.g. 
[17, 181). In this way the exact Nienhuis self-avoiding walk exponents v = 2 and y = 3 
[9] were recovered on both the honeycomb 111, 121 and square lattices [13, 151. Moreover 
the squarelattice O(n) model contains aregion akin to chah attraction in polymer solutions. 
In this region the exponents U = emerge as possible candidates for the critical 
exponents goveming the 0 transition of two-dimensional polymers [IS]. A different set of 
exponents for the 0 transition are due to Duplantier and Saleur [191 who obtained Y = $ 
and y = $ via Coulomb gas arguments for an O(n) model on the honeycomb lattice with 
random defects. 

Exact results are obtained here for the critical behaviour of the lint of the three square- 
lattice O(n) models introduced by Nienhuis [8]. Our approach is to adopt the philosophy 
used in the study of the other O(n) models [ll-13, 151 and investigate the related vertex 
model. The critical exponents are obtained via the dominant finite-size behaviour. The 
notion that conformal invariance reflects the operator content of a model in its finite-size 
behaviour has breathed new life into the study of solvable lattice models (see, e.g. [201 
and the reprint volumes 121, 221). A numerical investigation into the finitesize behaviour 
of the loop version of the first Nienhuis square lattice O(n) model is given in Bldte and 
Nienhuis 1231, where it is labelled as branch 0. 

and y = 

2. The various models 

We begin by recalling the definition of the models [8,23]. The configurations of the loop 
model are the graphs G consisting of non-intersecting closed polygons covering some (or 
none) of the edges of the square lattice. Each vertex is thus visited either none, one or two 
times. The nine allowed vertices for the general loop model are shown in figure 1. For the 
model of interest here, the corresponding weights are 

P I ,  ..., P9 = ( v + w ,  U, U, w ,  w,o,o. U, w )  (5) 

where Bl6te and Nienhuis have investigated the symmehic point U = w = 1 [23]t. The 
partition sum is defined by 

where mi is the number of vertices of type i and N is the number of loops of fugacity 
n = 2cosA - 1 = eZi8 + e-2io in a given configuration G (thus mg = m7 = 0). In more 
recent work, on multi-coloured loop models, this model is referred to as a dilute loop model, 
in convast to the dense loop model in which ps  and ps are the only non-zero weights [24]. 

t Actually they investigate the point U = w = 4, so we have intmduced a normalization factor of 2 per velfsx. 
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Figure 1. The vertex states of the loop model. 

The present loop model can also be viewed as a WO-colour model consmcted from the 
dense loop model ,[25]. 

On the other hand, Nienhuis [SI has cast the above partition sum into that of a vertex 
model, 

Z = ' c n ( v e m x  weights) (7) 

where the summation is now over all allowed arrow coverings of the lattice. All nineteen 
possible vertices are depicted in figure 2. The venex weights corresponding to (5) can Lie 
written [SI$ 

0 1 0  = 0 1 1  = W I Z  = 0 1 3  = 0 

014 = 01.5 = v 

In order to make contact with the numerical results of [23] we consider for simplicity only 
the isotropic case U = w = 1. Although important for deriving the related quantum spin 
chain, this anisotropy does not change the underlying physics. 

X X X X X X X X X  1 2 3 4 5 6 7 8 9  

xxxxxxx3(xx 10 11 12 13 14 15 16 17 18 19 

Figure 2. The sfater of the nineteen-vertex mcdol. 

t Note that we have made an explicit choice ,y = -8/2 for the gauge factor x appearing in [SI. 
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Given the vertex weights (8) it follows that the equivalent result to (2) for the isotropic 
fifteen-vertex model is 

xj = 1 -k uj (9) 

where 

U j = O V O  ( O  O O) w i t h V =  (: : 41;) (10) 
0 0 0  1 4-1 q- 

and q = eis satisfies the TL algebra (3) with 

&= 1 i - n .  (11) 

This directly establishes the TL equivalence between the fifteen- and six-vertex models. 
This equivalence has been established in [23] by other arguments. In particular, it implies 
that the corresponding O(n) model is critical when n < 1 with a gap opening up in the 
eigenspechwn for n z 1. We shall confine OUT attention to the critical region. 

We have thus seen that the vertex model with weights given in (8) provides a three-state 
representation of the n algebra. The anisonopic parametrization of this three-state model 
can be found in the paper by Deguchi er a1 [%I on the relationship between solvable lattice 
models and the theory of knots and braids (see, in particular, equation (A.4)). The related 
quantum spin chain is the q-deformed generalization [271 of the isotropic spin-1 biquadratic 
model [28]. The Hamiltonian for this family of quantum spin chains is simply the sum of 
the TL operators Uj. A numerical investigation of the q-deformed spin chain has recently 
been undertaken by Alcaraz and Malvezzi [291 (see also [301). We note that a Bethe ansatz 
solution of the fifteen-vertex TL model, along with the q-deformed spimchain, has been 
given by Kliimper via a mapping onto the six-vertex model [31]. However, we shall not 
need such a solution here. The n equivalence between the various models will suffice. 
In panicular, we make extensive use of the known finite-size properties of the six-vertex 
modeVXXZ chain (see, e.g. [12, 32-34] and references therein) to obtain the results of 
interest for the fifteen-vertex model and thus 6nalIy the O(n) model. 

3. Critical behaviour 

From the "iL equivalence between the fifteen- and six-vertex models, the buIk free energy 
per site of the loop model immediately follows from the isohopic six-vertex model where 
U = (see, e.g.. [3, 5])t, 

dt 
sinh(z - A) f  sinh At 

fm 21 sinhrrt cosh At 

where from (4) and (11) n = 2cosh - 1 is the most convenient parametrization for the 
O(n) model (rather than n = 2 ~ 0 ~ 2 8 ) .  Some speca  values are 141: 

(1) fm = z l n [ r ( & 2 r ( ~ ) ]  = 0.783.. . at n = 1 (A = 0); 

t Note that to make all three models share the same buk free energy we drop the normdimtian f a r  p appeaing 
in the vertex weights (1). 
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(2) f,=In2=0.693 ... a t n = O ( h = 4 n ) ;  
(3) fm = eZCln = 0.583.. . at n = -1  (A = in), where C is Catalan's constant; 
(4) fm = $ln($) = 0.431.. . at n = -2-(A = in), where ef - IS . Lieb's residual entropy 

2 

3 
of square ice [l]. 

To obtain the critical exponents of the loop m'odel, our starting point is a direct numerical 
comparison of the eigenspectra of three transfer matrices: 

(1) the diagonal-to-diagonal uansfer matrix of the loop model (5) with periodic boundary 

(2) the row-to-row transfer matrix of the fifteen-vertex model (8); 
(3) the row-to-row transfer mahix of the six-vertex model (1). 

Each transfer matrix is defined on a finite strip of width L. In the latter two cases we also 
impose a seam ei4. Specificdly, the seam is a line parael with the transfer matrix direction 
crossing a column of horizontal bonds. An extra weight e'+ (e&) is assigned for right (left) 
pointing arrows crossing the seam. 

The loop model transfer matrix has been discussed at length in [23]. Two sectors of 
this manix are labelled by nd = 0 and nd = 1 which are, respectively, even- and odd-parity 
sectors. The nd =- 0 sector is of size a L  x ar. and the i?d = 1 sector is of size bL  x bL, 
where the connectivities aL and b L  (QL < bL) are tabulated,in table 6 of [23]. In contrast, 
the fifteen-vertex transfer matrix is 3L x 3L while the six-vertex transfer matrix is ZL x ZL.  
Each of these transfer matrices decomposes into sectors deterinined in size by the trinomial 
and binomial distributions. 

Our observations on the eigenspecaa of the three models for even L are as follows. 
For given n,  all eigenvalues,in the nd = 0 sector of the loop model occur in the largest 
sector of the fifteen-vertex model at the corresponding value of B with seam value # q ~  = 28 
(recall that n = 2cos28). All eigenvalues in the nd = 1 sector of the loop model occur 
in the second largest sector of the fifteen-vertex model with @,s = 0, i.e. with periodic 
boundary conditions. In contrast to the = 0 case, the nd = 1 sector is the same size as 
the next-largest sector of the fifteen-vertex model and the mapping between eigenvalues in 
 this case is one to one. The relationship between the eigenspectra of the two vertex models 
is more complicated. All eigenvalues in the largest sector of the six-vertex model appear 
as eigenvalues in the largest sector of the 6fteen-vekx model when the seams obey 

conditions and dangling bonds used in [23]; 

COS $6 = cos 415 f 1. (13) 

This relationship was observed between the eigenspectra of the q-deformed spin-1 
biquadratic and spin-; X X Z  chains with twisted boundary conditions [29]. Conversely, 
the relationship between eigenvalues in  the next-largest sector of each model holds with no 
seam, i.e. 46 = b15 = 0. 

We are now in a position to obtain 'the cenual charge and scaling dimensions of the 
various models. Defining the free energy per site as fL = L-'InAo, where A0 is the 
IargesL eigenvalue of the transfer mahix, the central charge follows from the leading finite- 
size correction [35,~361 

Z C  
f L  = fm + - 6L2' 
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The central charge of the periodic six-vertex model is c = 1 with, more generally [32,241, 

6# 
n(n -A)' c = l -  

From (13) with 41s = 0 the corresponding seam in the six-vertex model is 
and thus from (15) the central charge of the periodic fifteen-vertex model is 

= i(3 + 8) 

This result is in agreement with that obrained for the spin-1 qdeformed biquadratic model 
in the critical region [29] (there is in fact a misprint in equation (2.20) of 1291). We thus 
see that, in contrast to the six-vertex model, the central charge of the periodic fifteen-vertex 
model is continuously varying with A. The exact central charge of the O(n) model follows 
from (13) with @ I S  = 28, which gives cos46 =cosh and thus from (15) 

This result also follows immediately &om the two-colour interpretation [251. 

[36] and references therein) 
The scaling dimensions Xi are related to the inverse correlation lengths via (see. e.g., 

(18) 

where Fi is the correlation length of the ith operator and Ai is the ith leading eigenvalue. 
The A-dependent scaling dimensions appearing in the six-vertex model are of the form 
[3%34] 

6;' = ln(Ao/Ai) 2: 2nX; IL  

m2 E - A  
x ~ , ~  = n2xP + - where xp = ?. 

4x83 
Along with the cenaal charge Blbte and Nienhuis have given numerical estimates of the 
thermal and magnetic scaling dimensions. The thermal scaling dimension X, of the loop 
model follows from the leading excitation in the nd = 0 sector [23]. This state is the leading 
excitation in the largest sector of the six-vertex model with seam 46 = A. Hence [32] 

The magnetic scaling dimension X, foUows bom the leading eigenvalue in the n d  = 1 
sector [231. This eigenvalue is equivalent to the leading eigenvalue in the next-largest 
sector of the six-vertex model with 46 = 0. Hence [32] 

These exact results are in agreement with the identification with the Kac formula: X, = 
X, = 2A(m, m)  with m + 1 = r / A  1231 where (see, e.g., [ZO]) 
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That X, = X, for this model is due to the equality of the relevant eigenvalues for linite 
L. This equality is a consequence of the larger degeneracy between the eigenvalues of the 
two sectors f ld = 0 and n d  = 1. We find that the next-to-leading thermal and magnetic 
exponents are given by 

which confirms the identification X,, = 2A(m, m - 1) made in [23]. More generally. we 
find that the above scaling dimensions belong to the sequence 

Xj = x,,o - Xo.h/n = W O ,  i )  (24) 

with X, = X, = XI and X,, = X,, = Xz. 
When L is odd the equivalence between the largest eigenvalues of the three models is 

independent of the seam. Thus in this case the cenhal charge is that of the six-vertex model 
WI, namely 

(25) 
Consequently the scaling dimension associated with the ‘interface energy’ between odd and 
even sites [U] is given by 

i. = -; + 3x1211. 

(n - A)’ - 4A’ 
Xht = [CO(“) - 3/12  = 

8z(z -A) ’ 

Here we make the identification X;, = ZA(;m, i m )  = ZA(0, 1/2) which differs from that 
made in 1231. In the six-vertex model the largest eigenvalue is two-fold degenerate for L 
odd. In th is  case an excitation of spin-wave index 4 produces a ‘defect’ with the associated 
scaling dimension xl/z,o perturbing the c = 1 theory to one with effective central charge 
given by equation (25). We see that the largest eigenvalue of the fifteen-vertex model is 
three-fold degenerate for L odd. On the other hand, there is a two-fold degeneraky in 
the loop model, with the largest eigenvalue appearing in both the nd = 0 and nd = 1 
sectors. This degeneracy, and subsequent vanishing of the associated scaling amplitude, 
can be established in both sectors by general arguments for odd system sizes and fl = 0 
[37]. Similar arguments predict the vanishing of the cenhal charge at n = 0 for L even 
[37l. For L odd we find the leading excitation has scaling dimension X = 1 - A/n. 

The critical exponents of the loop model follow in the usual way, with q = 2X,, 
l / u  = 2- X, and y = (2- q)u. Thus for L even we have the exponents U = 4 and y = $ 
in the limit f l  = 0. These are to be compared with the DuplantierSaleur values (U = $ and 
y = +) [19]. The above exponents are also distinct from other known universality classes, 
including kinetic growth trails (U = $ and y = 1) and mails on the L lattice, which are 
equivalent to SAWS on the Manhattan lattice and thus in the SAW universality class (see, e.g., 
[19, 381 and references therein). 

The precise elucidation of the present universality class, and in particular whether or 
not it describes the configurational statistics of self-avoiding self-attracting nails with a turn 
at every step, remains an interesting question for funher study. 
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